Publications
For live links see Alex's Google Scholar profile.
1. Shih HW, Alas GCM, Paredez AR. A cell-cycle-dependent GARP-like transcriptional repressor regulates the initiation of differentiation in Giardia lamblia. Proc Natl Acad Sci U S A. 2022;119(22):e2204402119. Epub 20220525. doi: 10.1073/pnas.2204402119. PubMed PMID: 35613049.
2. Steele-Ogus MC, Obenaus AM, Sniadecki NJ, Paredez AR. Disc and Actin Associated Protein 1 influences attachment in the intestinal parasite Giardia lamblia. PLoS Pathog. 2022;18(3):e1010433. Epub 20220325. doi: 10.1371/journal.ppat.1010433. PubMed PMID: 35333908; PubMed Central PMCID: PMCPMC8986099.
3. Hardin WR, Alas GCM, Taparia N, Thomas EB, Steele-Ogus MC, Hvorecny KL, et al. The Giardia ventrolateral flange is a lamellar membrane protrusion that supports attachment. PLoS Pathog. 2022;18(4):e1010496. Epub 20220428. doi: 10.1371/journal.ppat.1010496. PubMed PMID: 35482847; PubMed Central PMCID: PMCPMC9089883.
4. Thomas EB, Sutanto R, Johnson RS, Shih HW, Alas GCM, Krtkova J, et al. Staging Encystation Progression in Giardia lamblia Using Encystation-Specific Vesicle Morphology and Associating Molecular Markers. Frontiers in cell and developmental biology. 2021;9(789):662945. Epub 2021/05/15. doi: 10.3389/fcell.2021.662945. PubMed PMID: 33987184; PubMed Central PMCID: PMCPMC8111296.
5. Steele-Ogus MC, Johnson RS, MacCoss MJ, Paredez AR. Identification of Actin Filament-Associated Proteins in Giardia lamblia. Microbiol Spectr. 2021:e0055821. Epub 2021/07/22. doi: 10.1128/Spectrum.00558-21. PubMed PMID: 34287056.
6. Michaels SA, Hennessey KM, Paragas N, Paredez AR, Ojo KK. A Curious Case for Development of Kinase Inhibitors as Antigiardiasis Treatments Using Advanced Drug Techniques. ACS Infect Dis. 2021. Epub 2021/02/04. doi: 10.1021/acsinfecdis.0c00919. PubMed PMID: 33534539.
7. Hardin WR, Alas GCM, Taparia N, Thomas EB, Steele-Ogus M, Hvorecny KL, et al. The Giardia lamellipodium-like ventrolateral flange supports attachment and rapid cytokinesis. bioRxiv. 2021:2021.01.31.429041. doi: 10.1101/2021.01.31.429041.
8. Michaels SA, Shih HW, Zhang B, Navaluna ED, Zhang Z, Ranade RM, et al. Methionyl-tRNA synthetase inhibitor has potent in vivo activity in a novel Giardia lamblia luciferase murine infection model. The Journal of antimicrobial chemotherapy. 2020;75(5):1218-27. Epub 2020/02/06. doi: 10.1093/jac/dkz567. PubMed PMID: 32011682.
9. Hennessey KM, Alas GCM, Rogiers I, Li R, Merritt EA, Paredez AR. Nek8445, a protein kinase required for microtubule regulation and cytokinesis in Giardia lamblia. Mol Biol Cell. 2020:mbcE19070406. doi: 10.1091/mbc.E19-07-0406. PubMed PMID: 32459558.
10. Hennessey KM, Rogiers IC, Shih HW, Hulverson MA, Choi R, McCloskey MC, et al. Screening of the Pathogen Box for inhibitors with dual efficacy against Giardia lamblia and Cryptosporidium parvum. PLoS neglected tropical diseases. 2018;12(8):e0006673. Epub 2018/08/07. doi: 10.1371/journal.pntd.0006673. PubMed PMID: 30080847; PubMed Central PMCID: PMCPMC6095626.
11. Krtkova J, Xu J, Lalle M, Steele-Ogus M, Alas GCM, Sept D, et al. 14-3-3 Regulates Actin Filament Formation in the Deep-Branching Eukaryote Giardia lamblia. mSphere. 2017;2(5). doi: 10.1128/mSphere.00248-17. PubMed PMID: 28932813; PubMed Central PMCID: PMCPMC5597967.
12. Krtkova J, Paredez AR. Use of Translation Blocking Morpholinos for Gene Knockdown in Giardia lamblia. Methods in molecular biology (Clifton, NJ). 2017;1565:123-40. Epub 2017/04/02. doi: 10.1007/978-1-4939-6817-6_11. PubMed PMID: 28364239.
13. Hardin WR, Li R, Xu J, Shelton AM, Alas GCM, Minin VN, et al. Myosin-independent cytokinesis in Giardia utilizes flagella to coordinate force generation and direct membrane trafficking. Proc Natl Acad Sci U S A. 2017;114(29):E5854-E63. Epub 2017/07/07. doi: 10.1073/pnas.1705096114. PubMed PMID: 28679631; PubMed Central PMCID: PMCPMC5530689.
14. Halpern AR, Alas GCM, Chozinski TJ, Paredez AR, Vaughan JC. Hybrid Structured Illumination Expansion Microscopy Reveals Microbial Cytoskeleton Organization. ACS nano. 2017;11(12):12677-86. Epub 2017/11/23. doi: 10.1021/acsnano.7b07200. PubMed PMID: 29165993; PubMed Central PMCID: PMCPMC5752594.
15. Krtkova J, Thomas EB, Alas GC, Schraner EM, Behjatnia HR, Hehl AB, et al. Rac Regulates Giardia lamblia Encystation by Coordinating Cyst Wall Protein Trafficking and Secretion. mBio. 2016;7(4). Epub 2016/08/25. doi: 10.1128/mBio.01003-16. PubMed PMID: 27555307; PubMed Central PMCID: PMCPMC4999545.
16. Hennessey KM, Smith TR, Xu JW, Alas GC, Ojo KK, Merritt EA, et al. Identification and Validation of Small-Gatekeeper Kinases as Drug Targets in Giardia lamblia. PLoS neglected tropical diseases. 2016;10(11):e0005107. Epub 2016/11/03. doi: 10.1371/journal.pntd.0005107. PubMed PMID: 27806042; PubMed Central PMCID: PMCPMC5091913.
17. Paredez AR, Nayeri A, Xu JW, Krtkova J, Cande WZ. Identification of obscure yet conserved actin associated proteins in Giardia lamblia. Eukaryot Cell. 2014;13(6):776-84. Epub 2014/04/15. doi: 10.1128/EC.00041-14. PubMed PMID: 24728194; PubMed Central PMCID: PMC4054273.
18. Dawson SC, Paredez AR. Alternative cytoskeletal landscapes: cytoskeletal novelty and evolution in basal excavate protists. Curr Opin Cell Biol. 2013;25(1):134-41. doi: 10.1016/j.ceb.2012.11.005. PubMed PMID: 23312067.
19. Paredez AR, Assaf ZJ, Sept D, Timofejeva L, Dawson SC, Wang CJ, et al. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins. Proc Natl Acad Sci U S A. 2011;108(15):6151-6. doi: 10.1073/pnas.1018593108. PubMed PMID: 21444821; PubMed Central PMCID: PMC3076823.
20. Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 2010;140(5):631-42. doi: 10.1016/j.cell.2010.01.032. PubMed PMID: 20211133.
21. Gutierrez R, Lindeboom JJ, Paredez AR, Emons AM, Ehrhardt DW. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol. 2009;11(7):797-806. doi: 10.1038/ncb1886. PubMed PMID: 19525940.
22. Carpenter ML, Cande WZ. Using morpholinos for gene knockdown in Giardia intestinalis. Eukaryot Cell. 2009;8(6):916-9. doi: 10.1128/EC.00041-09. PubMed PMID: 19377039; PubMed Central PMCID: PMC2698301.
23. Paredez AR, Persson S, Ehrhardt DW, Somerville CR. Genetic evidence that cellulose synthase activity influences microtubule cortical array organization. Plant Physiol. 2008;147(4):1723-34. doi: 10.1104/pp.108.120196. PubMed PMID: ISI:000258184800025.
24. Gu Y, Deng Z, Paredez AR, DeBolt S, Wang ZY, Somerville C. Prefoldin 6 is required for normal microtubule dynamics and organization in Arabidopsis. Proc Natl Acad Sci U S A. 2008;105(46):18064-9. doi: 10.1073/pnas.0808652105. PubMed PMID: 19004800; PubMed Central PMCID: PMC2584705.
25. Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, et al. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci U S A. 2007;104(39):15566-71. PubMed PMID: ISI:000249806900070.
26. Paradez A, Wright A, Ehrhardt DW. Microtubule cortical array organization and plant cell morphogenesis. Current Opinion in Plant Biology. 2006;9(6):571-8. doi: 10.1016/j.pbi.2006.09.005. PubMed PMID: ISI:000242057800004.
27. Paredez AR, Somerville CR, Ehrhardt DW. Visualization of cellulose synthase demonstrates functional association with microtubules. Science. 2006;312(5779):1491-5. doi: 10.1126/science.1126551. PubMed PMID: ISI:000238124100038.
28. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, et al. Toward a systems approach to understanding plant cell walls. Science. 2004;306(5705):2206-11. Epub 2004/12/25. doi: 306/5705/2206 [pii]
10.1126/science.1102765 [doi]. PubMed PMID: 15618507.
29. Rappleye CA, Paredez AR, Smith CW, McDonald KL, Aroian RV. The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode Caenorhabditis elegans. Gene Dev. 1999;13(21):2838-51. PubMed PMID: ISI:000083685100008.
2. Steele-Ogus MC, Obenaus AM, Sniadecki NJ, Paredez AR. Disc and Actin Associated Protein 1 influences attachment in the intestinal parasite Giardia lamblia. PLoS Pathog. 2022;18(3):e1010433. Epub 20220325. doi: 10.1371/journal.ppat.1010433. PubMed PMID: 35333908; PubMed Central PMCID: PMCPMC8986099.
3. Hardin WR, Alas GCM, Taparia N, Thomas EB, Steele-Ogus MC, Hvorecny KL, et al. The Giardia ventrolateral flange is a lamellar membrane protrusion that supports attachment. PLoS Pathog. 2022;18(4):e1010496. Epub 20220428. doi: 10.1371/journal.ppat.1010496. PubMed PMID: 35482847; PubMed Central PMCID: PMCPMC9089883.
4. Thomas EB, Sutanto R, Johnson RS, Shih HW, Alas GCM, Krtkova J, et al. Staging Encystation Progression in Giardia lamblia Using Encystation-Specific Vesicle Morphology and Associating Molecular Markers. Frontiers in cell and developmental biology. 2021;9(789):662945. Epub 2021/05/15. doi: 10.3389/fcell.2021.662945. PubMed PMID: 33987184; PubMed Central PMCID: PMCPMC8111296.
5. Steele-Ogus MC, Johnson RS, MacCoss MJ, Paredez AR. Identification of Actin Filament-Associated Proteins in Giardia lamblia. Microbiol Spectr. 2021:e0055821. Epub 2021/07/22. doi: 10.1128/Spectrum.00558-21. PubMed PMID: 34287056.
6. Michaels SA, Hennessey KM, Paragas N, Paredez AR, Ojo KK. A Curious Case for Development of Kinase Inhibitors as Antigiardiasis Treatments Using Advanced Drug Techniques. ACS Infect Dis. 2021. Epub 2021/02/04. doi: 10.1021/acsinfecdis.0c00919. PubMed PMID: 33534539.
7. Hardin WR, Alas GCM, Taparia N, Thomas EB, Steele-Ogus M, Hvorecny KL, et al. The Giardia lamellipodium-like ventrolateral flange supports attachment and rapid cytokinesis. bioRxiv. 2021:2021.01.31.429041. doi: 10.1101/2021.01.31.429041.
8. Michaels SA, Shih HW, Zhang B, Navaluna ED, Zhang Z, Ranade RM, et al. Methionyl-tRNA synthetase inhibitor has potent in vivo activity in a novel Giardia lamblia luciferase murine infection model. The Journal of antimicrobial chemotherapy. 2020;75(5):1218-27. Epub 2020/02/06. doi: 10.1093/jac/dkz567. PubMed PMID: 32011682.
9. Hennessey KM, Alas GCM, Rogiers I, Li R, Merritt EA, Paredez AR. Nek8445, a protein kinase required for microtubule regulation and cytokinesis in Giardia lamblia. Mol Biol Cell. 2020:mbcE19070406. doi: 10.1091/mbc.E19-07-0406. PubMed PMID: 32459558.
10. Hennessey KM, Rogiers IC, Shih HW, Hulverson MA, Choi R, McCloskey MC, et al. Screening of the Pathogen Box for inhibitors with dual efficacy against Giardia lamblia and Cryptosporidium parvum. PLoS neglected tropical diseases. 2018;12(8):e0006673. Epub 2018/08/07. doi: 10.1371/journal.pntd.0006673. PubMed PMID: 30080847; PubMed Central PMCID: PMCPMC6095626.
11. Krtkova J, Xu J, Lalle M, Steele-Ogus M, Alas GCM, Sept D, et al. 14-3-3 Regulates Actin Filament Formation in the Deep-Branching Eukaryote Giardia lamblia. mSphere. 2017;2(5). doi: 10.1128/mSphere.00248-17. PubMed PMID: 28932813; PubMed Central PMCID: PMCPMC5597967.
12. Krtkova J, Paredez AR. Use of Translation Blocking Morpholinos for Gene Knockdown in Giardia lamblia. Methods in molecular biology (Clifton, NJ). 2017;1565:123-40. Epub 2017/04/02. doi: 10.1007/978-1-4939-6817-6_11. PubMed PMID: 28364239.
13. Hardin WR, Li R, Xu J, Shelton AM, Alas GCM, Minin VN, et al. Myosin-independent cytokinesis in Giardia utilizes flagella to coordinate force generation and direct membrane trafficking. Proc Natl Acad Sci U S A. 2017;114(29):E5854-E63. Epub 2017/07/07. doi: 10.1073/pnas.1705096114. PubMed PMID: 28679631; PubMed Central PMCID: PMCPMC5530689.
14. Halpern AR, Alas GCM, Chozinski TJ, Paredez AR, Vaughan JC. Hybrid Structured Illumination Expansion Microscopy Reveals Microbial Cytoskeleton Organization. ACS nano. 2017;11(12):12677-86. Epub 2017/11/23. doi: 10.1021/acsnano.7b07200. PubMed PMID: 29165993; PubMed Central PMCID: PMCPMC5752594.
15. Krtkova J, Thomas EB, Alas GC, Schraner EM, Behjatnia HR, Hehl AB, et al. Rac Regulates Giardia lamblia Encystation by Coordinating Cyst Wall Protein Trafficking and Secretion. mBio. 2016;7(4). Epub 2016/08/25. doi: 10.1128/mBio.01003-16. PubMed PMID: 27555307; PubMed Central PMCID: PMCPMC4999545.
16. Hennessey KM, Smith TR, Xu JW, Alas GC, Ojo KK, Merritt EA, et al. Identification and Validation of Small-Gatekeeper Kinases as Drug Targets in Giardia lamblia. PLoS neglected tropical diseases. 2016;10(11):e0005107. Epub 2016/11/03. doi: 10.1371/journal.pntd.0005107. PubMed PMID: 27806042; PubMed Central PMCID: PMCPMC5091913.
17. Paredez AR, Nayeri A, Xu JW, Krtkova J, Cande WZ. Identification of obscure yet conserved actin associated proteins in Giardia lamblia. Eukaryot Cell. 2014;13(6):776-84. Epub 2014/04/15. doi: 10.1128/EC.00041-14. PubMed PMID: 24728194; PubMed Central PMCID: PMC4054273.
18. Dawson SC, Paredez AR. Alternative cytoskeletal landscapes: cytoskeletal novelty and evolution in basal excavate protists. Curr Opin Cell Biol. 2013;25(1):134-41. doi: 10.1016/j.ceb.2012.11.005. PubMed PMID: 23312067.
19. Paredez AR, Assaf ZJ, Sept D, Timofejeva L, Dawson SC, Wang CJ, et al. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins. Proc Natl Acad Sci U S A. 2011;108(15):6151-6. doi: 10.1073/pnas.1018593108. PubMed PMID: 21444821; PubMed Central PMCID: PMC3076823.
20. Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 2010;140(5):631-42. doi: 10.1016/j.cell.2010.01.032. PubMed PMID: 20211133.
21. Gutierrez R, Lindeboom JJ, Paredez AR, Emons AM, Ehrhardt DW. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol. 2009;11(7):797-806. doi: 10.1038/ncb1886. PubMed PMID: 19525940.
22. Carpenter ML, Cande WZ. Using morpholinos for gene knockdown in Giardia intestinalis. Eukaryot Cell. 2009;8(6):916-9. doi: 10.1128/EC.00041-09. PubMed PMID: 19377039; PubMed Central PMCID: PMC2698301.
23. Paredez AR, Persson S, Ehrhardt DW, Somerville CR. Genetic evidence that cellulose synthase activity influences microtubule cortical array organization. Plant Physiol. 2008;147(4):1723-34. doi: 10.1104/pp.108.120196. PubMed PMID: ISI:000258184800025.
24. Gu Y, Deng Z, Paredez AR, DeBolt S, Wang ZY, Somerville C. Prefoldin 6 is required for normal microtubule dynamics and organization in Arabidopsis. Proc Natl Acad Sci U S A. 2008;105(46):18064-9. doi: 10.1073/pnas.0808652105. PubMed PMID: 19004800; PubMed Central PMCID: PMC2584705.
25. Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, et al. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci U S A. 2007;104(39):15566-71. PubMed PMID: ISI:000249806900070.
26. Paradez A, Wright A, Ehrhardt DW. Microtubule cortical array organization and plant cell morphogenesis. Current Opinion in Plant Biology. 2006;9(6):571-8. doi: 10.1016/j.pbi.2006.09.005. PubMed PMID: ISI:000242057800004.
27. Paredez AR, Somerville CR, Ehrhardt DW. Visualization of cellulose synthase demonstrates functional association with microtubules. Science. 2006;312(5779):1491-5. doi: 10.1126/science.1126551. PubMed PMID: ISI:000238124100038.
28. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, et al. Toward a systems approach to understanding plant cell walls. Science. 2004;306(5705):2206-11. Epub 2004/12/25. doi: 306/5705/2206 [pii]
10.1126/science.1102765 [doi]. PubMed PMID: 15618507.
29. Rappleye CA, Paredez AR, Smith CW, McDonald KL, Aroian RV. The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode Caenorhabditis elegans. Gene Dev. 1999;13(21):2838-51. PubMed PMID: ISI:000083685100008.